ТЕПЛЫЙ АСФАЛЬТОБЕТОН ВЧЕРА — СЕГОДНЯ — ЗАВТРА

В настоящее время технологии теплого асфальтобетона (ТАС), которые позиционируются, как заимствованные из-за рубежа, не что иное, как забытая с советских времен трансформированная разновидность технологий устройства дорожных покрытий. Вспомним ГОСТ 9128–84, действовавший до 1998 года, в котором была изложена классификация асфальтобетонных смесей с упоминанием теплых, от которых в дальнейшем отказались и забыли, вместо того чтобы развивать и совершенствовать.

С.Ю. Шеховцова, М. А. Высоцкая, В. С. Холопов, БГТУ им. В.Г. Шухова

праведливости ради стоит отметить, что отказ от теплых асфальтобетонов был не беспричинным. Ранее теплыми считались смеси, приготовленные на вязких или жидких битумах, при работе с которыми достичь необходимой плотности асфальтобетонных покрытий при пониженных температурах было невозможно, поэтому доуплотнение происходило в процессе эксплуатации под давлением колес транспорта, с частым образованием колеи и наплывов.

Современная технология получения теплых асфальтобетонов основывается на применении физических и химических процессов, снижающих вязкость или изменяющих реологию битума.

Различают несколько возможных вариантов получения теплых асфальтобетонных смесей: технологии вспенивания битума (вспенивающие добавки (цеолиты) или системы механического вспенивания); органические пластифицирующие добавки, содержащие воск и/или парафин; химические добавки (поверхностно-активные вещества (ПАВ)), комбинированные технологии, включающие в себя одновременное использование нескольких из перечисленных выше методов. Вспенивающие технологии по праву считаются наиболее экономически эффективными т.к. в качестве добавки к битуму выступает вода, которая, как правило, является легкодоступной и бесплатной. Но, тем не менее, эти технологии связаны с очень высокими первоначальными затратами на оборудование, ограничены нижним порогом температурного режима работ, обусловленного температурой конденсации водяного пара и требуют очень серьезного технологического контроля при применении. Необходимо понимать, что при введении воды в битум, даже при условии ее перехода в парообразное состояние, существуют риски по обратному переходу пара в воду и соответственно попаданию остаточной влаги в конечный уложенный асфальтобетон, что в дальней-

шем, несомненно, приведет к разрушению

дорожного покрытия. [1,2].

Использование органических добавок приводит к снижению температуры плавления битумов, что позволяет производить смеси при более низких температурах. Стоит отметить, что использование воска в составе битума при приготовлении теплой асфальтобетонной смеси приводит к снижению трещиностойкости и может быть не таким эффективным [3]. Остановимся и рассмотрим более подробно действие химических добавок на процессы получения теплых асфальтобетонных смесей.

Химические добавки при введении в битум изменяют структуру вяжущего, что позволяет снизить температуру производства и укладки асфальтобетонной смеси примерно на 40-60°C. Также такого рода добавки могут вытеснять влагу с границы раздела фаз «битум — каменный материал», что позволяет снижать риски при наличии остаточной влаги во вспененных низкотемпературных смесях [2]. Использование химических добавок не требует дополнительных затрат на модернизацию оборудования и, как правило, добавки смешиваются с битумом в резервуарах смесительной установки или вводятся посредством уже имеющегося автоматического оборудования для ввода обычных адгезионных добавок.

Бытует мнение, что через несколько лет теплый асфальтобетон полностью вытеснит с рынка традиционный горячий. Так это или нет, покажет время, но уже сейчас, несмотря на успех технологий механического вспенивания в США, рынок специальных химических добавок, которые влияют на свойства асфальтобетона, развивается опережающими темпами — ввиду простоты их применения, а также отсутствия необходимости дополнительного переоборудования производственных баз.

В настоящее время в России нет даже нормативной документации, регламентирующей применение добавок для производства ТАС. Однако в последнее время эти технологии стали активно внедряться при устройстве российских дорог. Также стоит уточнить, что российские

теплые асфальтобетоны, на сегодняшний момент, не совсем являются таковыми. Их приготовление осуществляют по аналогии с традиционными горячими смесями, за тем исключением, что уплотнение возможно при более низких температурах. В то время как зарубежные технологии основаны на изначально более низкой температуре приготовления, что дает множество преимуществ, начиная от экологического аспекта и заканчивая экономическим.

Ввиду малого объема информации и динамично развивающегося отечественного рынка добавок, технологии ТАС на основе химических добавок связаны с постоянной апробацией для выявления наиболее экономичных и эффективных. Представленная работа посвящена оценке влияния различных добавок зарубежного и российского производства на свойства вязкого дорожного битума (БНД 60/90 Московского НПЗ) и асфальтобетонов, приготовленных с их использованием. На отечественном рынке химических добавок для производства теплых асфальтобетонных смесей наиболее распространенными являются: Адгезол 3-ТД (ООО «Базис»), Азол 1007 (Котласский хим. завод), Cecabase RT 945, Cecabase RT Bio (Arkema), ДАД-ТА и ДАД-ТА2 (ООО «Селена»), Дорос-Т (ООО «Дорос»), Амдор ТС-1 (ООО «Уралхимпласт-Амдор), Evotherm 3G (MeadWestvaco INC), Rediset LQ (AkzoNobel). Эффективность таких добавок определяется способностью обеспечивать технологичность асфальтобетонной смеси при уплотнении при более низких температурах (в ряде случаев до 80 °C), увеличивать пластичность вяжущего, с сохранением физико-механических свойств асфальтобетонов. По принципу действия добавки условно разделяются на: разжижители и модификаторы (рис. 1). Разжижающие добавки снижают начальную вязкость битума и увеличивают скорость ориентации молекул, что связано с увеличением дисперсной среды в объеме вяжущего. Тогда как модифицирующие добавки должны незначительно влиять на начальную вязкость

мир дорог | март

битума, но способствовать увеличению скорости ориентации молекул ПАВ и вяжущего при меньшей сдвиговой нагрузке, что обеспечивает лучшее уплотнение асфальтобетона в покрытии при более низких температурах. При этом не будет происходить уменьшение толщины пленок битума на зернах минерального материала в отличие от разжижающих добавок.

Основным параметром, характеризующим технологичность теплой асфальтобетонной смеси при пониженных температурах, является ее способность с минимальными усилиями достигать необходимой плотности в процессе уплотнения. Максимально смоделировать процесс уплотнения асфальтобетонных смесей в покрытии в лабораторных условиях позволяет методика уплотнения образцов АБС с применением прибора вращательного (гиратационного) уплотнения, которое достигается за счет сочетания усилия сдвига при вращении и вертикальной результирующей силы, используется для моделирования и воспроизведения процесса реальных асфальтоукладочных работ, что позволяет оценить характеристики уплотняемости асфальтобетона. Прибор (Laboratory gyratory compactor Cooper CRT-GYR) фиксирует количество вращений (оборотов), необходимых для достижения заданной плотности асфальтобетона. В исследованиях было принято: асфальтобетон типа Б, с заданной плотностью — 2380кг/м³, расход добавки, в соответствии с рекомендациями производителей. Уплотнение смесей с различными температуропонижающими добавками производили при температуре 110 °C, таблица 1.

Анализ результатов, представленных в таблице 1, позволил установить, что все рассматриваемые добавки снижают необходимое количество оборотов гиратора на 38-55%, для достижения необходимой плотности асфальтобетона. Наиболее эффективными добавками с учетом соотношения «расход ПАВ/ уплотняемость» проявили себя: Cecabase RT 945, ДАД-ТА, Амдор TC-1, Evotherm 3G, Cecabase RT Bio, Rediset LQ. Однако ввиду того, что, согласно данным производителей, исследуемые зарубежные добавки аминного типа и оказывают идентичное влияние на уплотняемость асфальтобетонных смесей (таблица 1), в дальнейшем в работе рассматривались все добавки российских производителей и Cecabase RT 945 — как представитель импортных аналогов.

При оценке эффективности применяемых добавок немаловажной задачей является изучение их влияния на физико-механические свойства вяжущего, как основного структурообразующего

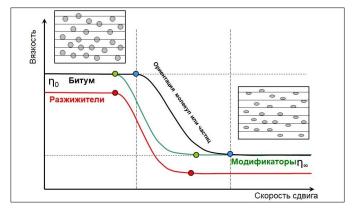


Рисунок 1. Кривая вязкости вяжущих для теплых асфальтобетонов

Таблица 1. Влияние различных добавок на гиратационное уплотнение ТАС

Наименование добавки	Расход добавки, % от массы битума	Температура уплотнения	Количество оборотов вращательного уплотнителя
АБС на БНД 60/90 без добавки	-	150°C	53
АБС на БНД 60/90 без добавки	-	110 ℃	110
АБС + Адгезол 3-ТД	1,0	110 ℃	65
АБС + ДАД-ТА2	1,0	110 ℃	66
АБС + Азол 1007	1,0	110 °C	65
ABC + Cecabase RT 945	0,3	110 ℃	50
АБС + ДАД-ТА	0,3	110 °C	53
АБС + Дорос - Т	0,6	110 °C	69
АБС + Амдор TC-1	0,3	110℃	62
ABC + Evotherm 3G	0,3	110 °C	50
ABC + Cecabase RT Bio	0,3	110 ℃	53
ABC + Rediset LQ	0,3	110 ℃	50
	•		

Таблица 2. Влияние различных добавок на пенетрацию битума

· · · · · · · · · · · · · · · · · · ·				
Наименование добавки	Расход добавки, % от массы битума	Пенетрация при		
		25°C	0 °C	
БНД 60/90	-	72	24	
Адгезол 3-ТД	1,0	82	26	
ДАД-ТА2	1,0	80	28	
Азол 1007	1,0	89	28	
Cecabase RT 945	0,3	76	29	
ДАД-ТА	0,3	76	28	
Дорос - Т	0,6	81	28	
Амдор TC-1	0,3	73	28	

компонента асфальтобетона. Основными показателями, отражающими поведение вяжущего в эксплуатационных условиях, являются: интервал пластичности (температура размягчения и температура хрупкости) и глубина проникновения иглы (пенетрация при 25 и 0 °C). К показателю, характеризующему технологические характеристики вяжущего, относится динамическая вязкость. Результаты исследования данных показателей представлены в таблице 2 и на рис. 1. Как видно из таблицы 2, добавки оказывают пластифицирующее влияние на битум, но не изменяют в соответствии с ГОСТ его марку. Модифицированный битум находится в диапазоне условной вязкости 60/90. Стоит отметить, что наибольший пластифицирующий эффект наблюдается у добавок с рекомендованной концентрацией 1% — в среднем 14 мм –1, тогда как у добавок с концентрацией 0,3% — 4 мм -1. Более любопытные результаты были

получены при изучении влияния добавок на интервал пластичности битума (рис. 2). В ходе проведения эксперимента было установлено, что почти все добавки с концентрацией 0,6-1% не прошли испытания по температуре размягчения вяжущих, полученные показатели находятся на границе допуска. Также стоит отметить, что они не оказали влияния на температуру хрупкости. При этом все добавки с рекомендованным расходом 0,3% — Cecabase RT 945, ДАД-ТА и Амдор ТС-1 — по температуре размягчения показали результаты, близкие к битуму, что говорит об отсутствии пластифицирующего эффекта в вяжущем в диапазоне эксплуатационных температур. Вместе с этим, у битумов с добавками наблюдается улучшение низкотемпературных характеристик, здесь лучше себя проявили добавки Cecabase RT945 и ДАД-ТА. При изучении динамической вязкости модифицированных битумов на реометре Anton Paar Physica MCR 101 (рис. 3),

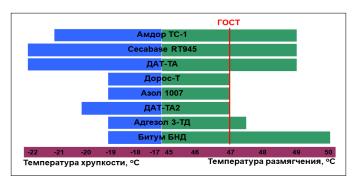


Рисунок 2. Влияние добавок на интервал пластичности битума

© Cecabase RT945

© Cecabase RT945

© DAAJ-TA

© Cecabase RT945

© DA3OJ

© DA3OJ

10

70°C 80°C 90°C 100°C 110°C 120°C 130°C 140°C

Temneparypa, °C

Рисунок 3. Динамическая вязкость битума с добавками, при скорости сдвига 100 с-1, на приборе Anton Paar Modular Compact Rheometer Physica MCR 101

установлено, что Азол 1007, снижает вязкость битума во всем измеряемом температурном диапазоне (t= 70-130 °C), что коррелирует с данными по температуре размягчения (рис. 2), и в свою очередь негативно отразится на прочностных и деформативных показателях асфальтобетона, приготовленного с его использованием. Добавки Cecabase RT 945 и ДАД-ТА незначительно влияют на начальную вязкость битума, сохраняя во всем температурном диапазоне технологичность вяжущего в процессе приготовления асфальтобетонной смеси и, в соответствии с таблицей 1, в процессе ее уплотнения.

И вот тут возникает логичный вопрос. За счет чего это происходит? Как функционируют эти температуропонижающие добавки?

Итак, молекула ПАВ состоит из длинного гидрофобного углеводородного хвоста и полярной функциональной группы. Полярные части гидрофильны — «любят воду» и вообще все полярное, а гидрофобные хвосты ориентированы к битуму (рис. 4).

На рисунке 4а изображена граница раздела фаз «битум — каменный материал», как видно, положительно заряженные части ПАВ притягиваются к отрицательно заряженной поверхности каменного материала и увеличивают к нему адгезию битума. Однако любое ПАВ имеет предел растворимости концентрации в растворе, с достижением которого граница раздела фаз полностью насыщается молекулами добавки. Дальнейшее увеличение концентрации ПАВ приводит к их самоорганизации в объеме раствора, в результате чего образуются так называемые мицеллы.

При уплотнении асфальтобетона катком (рис. 46) мицеллы не оказывают сопротивления. Под действием сдвиговой нагрузки они деформируются и меняют форму, а после снятия нагрузки принимают прежнюю форму. Поэтому при уплотнении катком мицеллы не разрушаются, а ведут себя как плоскости скольжения, позволяя битуму и каменным материалам легче скользить относительно друг друга при более низкой температуре. Изучение физико-механических свойств

асфальтобетонов, приготовленных на вяжущих, модифицированных добавками с рекомендованной концентрацией 0,3%, показало, что негативного влияния они не оказывают. Образцы асфальтобетонов, уплотненные при температуре 110 °С, соответствуют требованиям ГОСТ 9128–2013 для традиционных горячих асфальтобетонных смесей (таблица 3).

Асфальтобетоны с разжижающими добавками (Азол 1007, Адгезол 3-ТД), с рекомендованной концентрацией около 1% хуже уплотнились, что повлекло за собой логичное увеличение водонасыщения и снижение водостойкости образцов, что негативно отразится на работе дорожного покрытия, выполненного с их использованием. Однако, химические модифицирующие температуропонижающие добавки (ДАД-ТА, Cecabase RT945 и им

подобные), благодаря своему механизму действия в составе вяжущего и асфальтобетона, обеспечивают технологичность асфальтобетонной смеси при более низких температурах уплотнения, без негативного влияния на свойства битума и асфальтобетонной смеси на его основе. Подводя итог, можно сделать вывод, что теплые асфальтобетонные смеси обладают рядом неоспоримых достоинств, главными из которых являются снижение энергозатрат на производство теплых смесей и уменьшение выбросов вредных веществ в атмосферу, а также возможность продления строительного сезона [1-3]. Однако наряду с этим требуется провести еще достаточно большое количество исследований и опытно-экспериментальных работ, чтобы теплые асфальтобетонные смеси перестали быть диковинкой на российских дорогах.

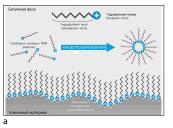


Рисунок 4. Принципиальная схема работы химических добавок: а) формирование мицелл; б) уплотнение асфальтобетонной смеси при пониженной температуре

Таблица 3. Физико-механические свойства асфальтобетонов, уплотненных при температуре 110 °C

Наименование показателя	ГОСТ 9128	Фактические показатели				
		БНД 60/90	ДАД-ТА	Cecabase RT945	Азол 1007	Адгезол 3-ТД
Средняя плотность, кг/м³	-	2310	2380	2380	2340	2330
Водонасыщение, %	1,54,0	3,46	1,68	1,72	2,53	2,55
Предел прочности при сжатии, МПа	не менее 2,5	3,18	4,83	4,62	4,28	4,32
при температуре 20 °C						
при температуре 50 °C	не менее 1,2	1,18	1,75	1,63	1,37	1,38
Водостойкость	не менее 0,9	0,80	0,98	0,97	0,90	0,90
Водостойкость при длительном водонасыщении	не менее 0,85	0,78	0,97	0,95	0,86	0,85

СПИСОК ЛИТЕРАТУРЫ

- 1. Warm mix asphalt investigation (Master of Science Thesis), Martins Zaumanis, Technical University of Denmark, Riga Technical University In cooperation with Danish Road Institute, Kgs. Lyngby, Denmark, 2010. Rediset® LQ Superior Warm-Mix.
- 2. Additive for Exceptional Compaction, Coating and Moisture Resistance akzonobel Surface Chemistry, Rediset LQ enhances cool weather foam warm-mix (Approved by APAC, Texas Bitulithic).
- 3. Low temperature cracking performance of wax modified bitumen and mixture p.k. das div. Of Highway and Railway Engineering, Royal Institute of Technology (KTH), Sweden; Y. Tasdemir Engineering and Architecture Faculty, Bozok University, Turkey; B. Birgisson Div. Of Highway and Railway Engineering, Royal Institute of Technology (KTH), Sweden.